Papers

The convexity condition of density functional theory
Andrew Burgess, EBL, and David D. O’Regan J. Chem. Phys. accepted (2023).

High-throughput determination of Hubbard U and Hund J values for transition metal oxides via linear response formalism
Guy C. Moore, Matthew K. Horton, Alexander Ganose, Martin Siron, EBL, David D. O’Regan, and Kristin A. Persson Phys. Rev. Mater. accepted (2023).

The tilted-plane structure of the energy of open quantum systems
Andrew Burgess, EBL, and David D. O’Regan (2023).

On-site and inter-site Hubbard corrections in magnetic monolayers: The case of FePS3 and CrI3
Fatemeh Haddadi, EBL, Iurii Timrov, Nicola Marzari, and Marco Gibertini (2023).

koopmans: an open-source package for accurately and efficiently predicting spectral properties with Koopmans functionals
EBL, Nicola Colonna, Riccardo De Gennaro, Ngoc Linh Nguyen, Giovanni Borghi, Andrea Ferretti, Ismaila Dabo, and Nicola Marzari. J. Chem. Theory Comput. 19 (2023).

Testing Koopmans spectral functionals on the analytically-solvable Hooke’s atom
Yannick Schubert, Nicola Marzari, and EBL, J. Chem. Phys. 158 (2023).

A DFT+U type functional derived to explicitly address the flat plane condition
Andrew Burgess, EBL, and David D. O’Regan, Phys. Rev. B. 107 (2023).

Koopmans spectral functionals in periodic-boundary conditions
Nicola Colonna, Riccardo De Gennaro, EBL, and Nicola Marzari, J. Chem. Theory Comput. 18 (2022).

Bloch’s theorem in orbital-density-dependent functionals: Band structures from Koopmans spectral functionals
Riccardo De Gennaro, Nicola Colonna, EBL, and Nicola Marzari, Phys. Rev. B 106 (2022).

Many-body study of Iron (III)-bound human serum transferrin
Hovan Lee, Cédric Weber, and EBL, J. Phys. Chem. Lett. 13 (2022).

Virtual computational chemistry teaching laboratories – hands-on at a distance
Rika Kobayashi, Theodorus P. M. Goumans, N. Ole Carstensen, Thomas M. Soini, Nicola Marzari, Iurii Timrov, Samuel Poncé, EBL, Christopher J. Sewell, Giovanni Pizzi, Francisco Ramirez, Marnik Bercx, Sebastiaan P. Huber, Carl S. Adorf, and Leopold Talirz, J. Chem. Educ. 98 (2021).

ONETEP + TOSCAM: uniting dynamical mean field theory and linear-scaling density functional theory
EBL, Daniel J. Cole, Nicholas D. M. Hine, Michael C. Payne, and Cédric Weber, J. Chem. Theory Comput. 16 (2020).

The ONETEP linear-scaling density functional theory program
Joseph C. A. Prentice, Jolyon Aarons, James C. Womack, Alice E. A. Allen, Lampros Andrinopoulos, Lucian Anton, Robert A. Bell, Arihant Bhandari, Gabriel A. Bramley, Robert J. Charlton, Rebecca J. Clements, Daniel J. Cole, Gabriel Constantinescu, Fabiano Corsetti, Simon M.-M. Dubois, Kevin K. B. Duff, José María Escartín, Andrea Greco, Quintin Hill, Louis P. Lee, EBL, David D. O’Regan, Maximillian J. S. Phipps, Laura E. Ratcliff, Álvaro Ruiz Serrano, Edward W. Tait, Gilberto Teobaldi, Valerio Vitale, Nelson Yeung, Tim J. Zuehlsdorff, Jacek Dziedzic, Peter D. Haynes, Nicholas D. M. Hine, Arash A. Mostofi, Mike C. Payne, and Chris-Kriton Skylaris, J. Chem. Phys. 152, 17 (2020).

Superexchange mechanism and quantum many body excitations in the archetypal di-Cu oxo-bridge
Mohamed Ali al-Badri, EBL, Antoine Georges, Daniel J. Cole, and Cedric Weber, Comm. Phys. 3 (2020).

Modelling a capped carbon nanotube by linear-scaling density-functional theory
Sabrina M. Masur, EBL, and Chris J. Edgcombe, J. Electron Spectrosc. & Relat. Phenom. 241 (2020).

Analysis of a capped carbon nanotube by linear-scaling density-functional theory
Chris Edgcombe, Sabrina Masur, Jack Whaley-Baldwin, EBL, and Crispin Barnes, Ultramicroscopy 198, 26 (2019).

Role of spin in the calculation of Hubbard U and Hund’s J parameters from first principles
EBL, Daniel J. Cole, Michael C. Payne, and David D. O’Regan, Phys. Rev. B 98, 235157 (2018).

Thermally activated local collapse of a flattened dipolar condensate
EBL and P. Blair Blakie, Phys. Rev. A 90, 053605 (2014).